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Adaptive tetrahedral meshing in free-surface flow
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Abstract

An unstructured, three-dimensional, moving-mesh algorithm is developed for free-surface flows with the capability

of simulating large deformation. A robust edge swapping algorithm and an optimization-based mesh smoothing algo-

rithm are used to improve mesh quality as the interface deforms. The edge swapping algorithm uses an optimal swap

sequence to transform configurations with several tetrahedra sharing a common edge. The optimization-based mesh

smoothing relocates vertex position so that the minimum quality of the incident cells is maximized. Also, edge contrac-

tion and bisection are used to adjust the mesh resolution according to surface curvature. These local refinements effec-

tively maintain good mesh quality and appropriate mesh size while avoiding global re-meshing. This scheme�s
robustness and accuracy are demonstrated with deforming liquid ligaments, periodic jets, and colliding droplets.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Many important engineering applications can be simulated using a free-surface model. This work is par-
ticularly concerned with liquid atomization. The details of this process are difficult to observe due to its

high speed and small scale. Therefore, the ability to do direct numerical simulation will greatly help develop

physical insights into this phenomenon and improve the accuracy of current spray models. This paper

presents an incompressible three-dimensional moving-mesh algorithm with the capability of simulating

free-surface flow with large deformation.
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Nomenclature

In(Æ) modified Bessel function of the first kind of order n
Jn(Æ) Bessel function of the first kind of order n

det(Æ) determinant of a square matrix

k wave number, 2p/k
r0 initial radius

S deformation of droplet collision: surface area/initial surface area

tc characteristic time, ðqr30=rÞ
1=2

J =rr0/(qm
2) = 1/Oh2

Oh Ohnesorge number, l/(qr0r)
1/2

Re Reynolds number

We Weber number

e disturbance amplitude of jet radius, non-dimensionalized by r0
/ velocity potential

k wavelength

l dynamic viscosity

m kinematic viscosity

q density
r surface tension

U dissipation
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In moving-mesh methods the domain deforms in order to follow the interface in a Lagrangian manner.

Lagrangian methods explicitly track the interface position by following the fluid motion. A two-dimensional

example is Welch�s moving-mesh scheme [1]. Welch used a triangular mesh to simulate compressible bubble

dynamics with mass transfer. Compared with other multi-phase methods, the moving-mesh scheme has the

following advantages. First, because moving-mesh schemes deform the mesh to follow the interface motion,

the interface is exactly tracked and is not smeared or diffused. In contrast, this feature is difficult to achieve in

a volume-of-fluid (VOF) method [2], which is an Eulerian surface capturing method. VOF methods use a

volume fraction or color function to represent the portion of a cell filled with a particular phase. This volume
fraction function is advected based on mass conservation to capture the interface. One of the advantages of

VOF is that no special treatment is necessary for interface reconnection or breakup, and hence topological

robustness is easily obtained (like [3], which used a characteristics-based method and a triangular grid). The

main difficulty of these methods is that the interface is not smooth when reconstructed from the color func-

tion. Brackbill et al.�s [4] continuum surface force (CSF) method does not need to reconstruct the interface

for surface tension calculation, and uses a carefully selected kernel to smooth the color function in the tran-

sition region. However, the interface profile may be diffused. The VOF method with quadtree mesh adapta-

tion [5,6] reduces the interface diffusion by refining the mesh around the whole interface. This method splits a
cell if it is close to the interface regardless of the local geometry, while the present moving-mesh method only

refines the mesh when the local surface curvature is high. So generally the total number of cells for VOF

method with adaptation is more than those in the moving-mesh method. For example, if five levels of refine-

ment are used to get ideal resolution, then the interface mesh size will be 25 times smaller than the original

mesh, which may considerably increase the computational effort for three-dimensional flows. Second, mov-

ing-mesh methods can achieve mass conservation easily, since the interface is moved using the fluid velocity.

In the level set methods, the interface is represented by the zero contour of a characteristic function. Like the

VOF method, level set is also an Eulerian interface capturing method. However, because the zero contour of
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the characteristic function does not have a strong mass conservation property as VOF�s volume fraction

function does, level set methods usually must use some extra treatments to conserve mass (such as Lagrang-

ian particles [7]). Third, in the moving-mesh scheme, resolution can be easily adjusted using edge bisection

and edge contraction methods. Because an unstructured mesh is used, these operations will not introduce

any extra difficulties. Finally, moving-mesh methods do not need to average the interface quantities.
Front-tracking methods, which are also Lagrangian methods, use a structured fixed mesh to solve the fluid

equations, and use tracking particles to track the interface [8]. These tracking particles are connected so they

form a mesh with a dimension one less than the fixed mesh. Then during the solution process, the quantities

at the interface, such as surface tension forces, are converted from the front tracking mesh to the nearby

nodes of the fixed mesh by a weighting function. In front-tracking methods, the interface is actually treated

like a narrow transition strip with finite width, but the width of the interface will not diffuse as in VOF meth-

ods. In a moving-mesh scheme one single mesh is used to solve both the interface motion and the fluid equa-

tions. The interface moves with the fluid, avoiding diffusion of the underlying fluid properties. Therefore,
there is no need to convert or average interface quantities.

Some boundary integral methods also move the mesh to track the interface [9,10]. In these methods, the

flow solution in the entire domain is obtained only from the boundary meshes. Since boundary integral

methods use a surface mesh, only two-dimensional mesh improvement techniques are necessary. Because

these methods can only solve purely elliptic problems, they are restricted to inviscid flows and creeping

flows.

Compared with other multi-phase methods, the major disadvantage of moving-mesh methods is that

the mesh may quickly become distorted and tangled, leading to large numerical error. Thus Welch�s
simulations [1] were limited to weakly deformed bubbles. To overcome this difficulty, most moving-

mesh methods utilize some kind of mesh improvement techniques. Fukai et al. [11,12] studied the

deformation of an axisymmetric liquid droplet colliding with a flat surface. In their work, a new mesh

was generated when the distortion of the existing mesh exceeded a threshold value. This new mesh was

generated in a way that only the nodes close to the droplet interface were different from the original

mesh. This technique avoids global re-meshing, but the algorithm is difficult to generalize to three

dimensions and other boundary conditions. Hu et al. [13] also used a moving-mesh to simulate particle

interaction. In their work, node insertion was used for mesh refinement when two particles approached
each other, and the changes in the cell volume and aspect ratio from the initial mesh were used as the

mesh quality measure. When some cells� qualities became unacceptable, a new mesh was generated

globally with no correspondence to the old one, and then all fluid parameters were projected to the

new mesh.

In practice, mesh improvement without global re-meshing is desirable in order to obtain better compu-

tational accuracy, stability and efficiency. Two commonly used improvements for triangular meshes are

edge swapping (flipping) and Laplacian mesh smoothing. Edge swapping changes the topological structure

of the existing mesh by local reconnections. Since these changes only affect local elements, large-scale inter-
polation of the flow field is avoided. The reconnection capability is essential for a deforming mesh, since if

two vertices are moving in opposite directions, then at some time they must be allowed to disconnect. Fyfe

et al. [14] used two-dimensional edge swapping and node addition/removal to transform obtuse angles, and

simulated internal gravity and capillary waves, droplet oscillations, and viscous shear layers. The Laplacian

mesh smoothing method relocates the vertex position without changing mesh topology. Helenbrook [15]

used mesh smoothing and simulated an inviscid droplet oscillating in a vacuum and a viscous droplet falling

in gas. Baker et al. [16] used both edge swapping and mesh smoothing methods, together with edge contrac-

tion and node insertion to control mesh resolution. Instead of eliminating obtuse angles, Baker et al. used
the Delaunay criterion as the mesh quality measure. The Delaunay criterion means that no vertex falls in

the interior of the circumcircle/circumsphere of any triangle/tetrahedron in the triangulation. Because two-

dimensional Delaunay triangulation has the property that it can maximize the minimum angle among all
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triangulations of a planar point set, two-dimensional moving-mesh schemes can tolerate significant mesh

distortion. Using this method Baker et al. successfully simulated a circle translating through a channel

and a square rotating in a circle. From these demonstrations one can see that some of the global re-meshing

steps in Hu et al.�s [13] two-dimensional simulations may be avoided using edge swapping and mesh

smoothing. Although in two dimensions Delaunay triangulation normally generates a good-quality mesh,
in three dimensions the Delaunay criterion fails to identify a kind of harmful cell called ‘‘sliver cells’’. These

cells have a moderate circum-radius (compared to the edge length), and thus can often survive in a Dela-

unay triangulation. Because of this, the desirable properties of the two-dimensional Delaunay criterion can-

not be generalized to three dimensions. Therefore, in the past, moving-mesh methods have been limited by

the robustness and accuracy of re-meshing.

This paper presents a new three-dimensional dynamic meshing scheme using an edge swapping algo-

rithm developed by Briere de L�isle and George [17], Klincsek [18] and Shewchuk [19], and an optimi-

zation-based mesh smoothing algorithm by Freitag et al. [20,21]. The three-dimensional edge swapping
algorithm was originally developed by Briere de L�isle et al., who proposed to use the optimal config-

uration to transform the local structure of several tetrahedra sharing a common edge. They found this

configuration by enumerating all possible cases. Shewchuk used Klincsek�s dynamic programming tech-

nique and developed a way to find such a configuration in polynomial time. In the present work Shew-

chuk�s algorithm is revised to avoid the temporary inverted cells, so that the geometric calculation is

easy to implement. In addition, a robust interpolation scheme is developed to handle the degenerate

cells during the edge swapping process. Another essential technique for maintaining mesh quality is

mesh smoothing. Unlike the Laplacian smoothing method, Freitag et al.�s optimization-based mesh
smoothing relocates a vertex so that the minimum quality of the incident tetrahedra is maximized.

Therefore, optimization-based smoothing guarantees that the minimum and overall mesh qualities are

always improved. The present work applies these recently developed techniques to a moving-mesh

method, and develops a numerical scheme that can simulate three-dimensional free-surface flow with

large deformation.

The outline of the paper is as follows: Section 2 describes the governing equations and discretization

scheme, and Sections 3 and 4 describe the mesh reconnection and optimization-based smoothing algo-

rithms. Some numerical tests and simulations are presented in Sections 5 and 6. These examples demon-
strate that this dynamic meshing scheme can simulate large deformation in three dimensions.
2. Governing equations and discretization

This work uses an exact fractional step method and a staggered mesh [22,23] to solve the incompressible

Navier–Stokes equations. Consider a moving control volume V with surface A and normal n. Let u be the

fluid velocity, and umesh be the mesh velocity. The incompressible continuity and momentum equations for

this control volume are:
I
A
u � ndA ¼ 0; ð1Þ

d

dt

Z
V
qudV þ

I
A
quðu� umeshÞ � ndA ¼

Z
V

qg�rpð ÞdV þ
I
A
lru � ndA: ð2Þ
Now define the velocity area integrals and the average cell velocity as:
U ¼
Z
A
u � ndA; ð3Þ
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Umesh ¼
Z
A
umesh � ndA; ð4Þ

uc ¼
1

V

Z
V
udV : ð5Þ
Then the discrete versions of Eqs. (1) and (2) on a tetrahedra cell are (with the Crank–Nicholson scheme

applied to the diffusion terms):
X
faces

U ¼ 0; ð6Þ

q
unþ1
c V nþ1 � uncV

n

Dt
þq

X
faces

ufðU �UmeshÞ ¼�V nþ1ðrp�qgÞnþ1þ
X
faces

0:5 ðlruf � nAÞn þðlruf � nAÞnþ1
h i

:

ð7Þ

Because in a staggered mesh scheme the primary unknown is the face mass flux U, the cell velocity uc must
be reconstructed from U:
uc ¼
1

V

X
faces

Uðxf � xcÞ; ð8Þ
where xf and xc are the face and cell centers of gravity, and the mass flux U is positive when flowing out of

this cell. The face velocity uf and face velocity gradient $uf Æ n in Eq. (7) are approximated by interpolating

the cell velocities uc from the neighbor cells.

The calculation of the face integral of the mesh velocity Umesh in Eq. (7) is shown in Fig. 1. Consider a
face xn

1x
n
2x

n
3 at time n. Assume this face moves to a new position xnþ1

1 xnþ1
2 xnþ1

3 at time n + 1. Then Umesh is the

volume of the prism swept by this face divided by the time interval Dt. Assuming the three vertices moves

with a constant velocity, Perot and Nallapati [22] integrated this process and found an exact analytical

solution
Umesh ¼
1

Dt
ðxnþ1

f � xn
f Þ �

1

2
ðnnþ1Anþ1 þ nnAnÞ � 1

12
vn1 � vn2 þ vn2 � vn3 þ vn3 � vn1½ �

� �
; ð9Þ
where An and An+1 are the face area at time n and n + 1, and vni is the node vector x
nþ1
i � xn

i . Note that the

side faces of the prism are curved, so its volume cannot be exactly calculated by splitting it into polyhe-

drons. Because Eq. (9) is an exact expression for the volume swept by a face, then Umesh exactly satisfies
the following geometric constraint:
xf
n

nn+1
xf

n+1

nn

x1
n+1

x2
n+1

x3
n+1

x1
n

x2
n

x3
n

Fig. 1. Calculation of Umesh: volume swept by face x1x2x3.
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V nþ1 � V n

Dt
¼

X
faces

Umesh: ð10Þ
The convection term in Eq. (7) is solved explicitly, using central differencing in time and a predictor–

corrector technique:
q
X
faces

ufðU � UmeshÞ � q
X
faces

0:5 ufðU � UmeshÞð Þn þ ufðU � UmeshÞð Þnþ1
h i

: ð11Þ
To this point Eqs. (6) and (7) are based on the primary unknown U. This work solves this system using an
exact fractional step method [23]. When fully discretized over the whole domain, the continuity equation (6)

becomes DU = 0, where D is the divergence operator (matrix) defined by Eq. (6), and U is the vector of all

face mass fluxes U. Let ~s be the stream function vector in 3D, l be an edge, and l be the edge vector of edge l.

Then the line integral of ~s along edge l is
s ¼
Z
l

~s � dl: ð12Þ
Then the face mass flux U can be exactly calculated as:
U ¼
X
edges

s � SIGNðl; nÞ: ð13Þ
The function SIGN(l,n) is positive if the edge vector l points in the counterclockwise direction of the face

normal n using the right-hand rule. Let s be the vector of all the edge integrals s. When fully discretized over

the whole domain, Eq. (13) becomes U = Cs. It is easily verified that the matrix C constructed this way is a

null space of D, and the continuity equation (6) is satisfied exactly. Now the primary unknown changes to s,

and the momentum equation (7) becomes the only constraint on s. Let l be an edge shared by several cells.
Then divide Eq. (7) by volume Vn+1 and take a line integral around edge l. This step removes the pressure

unknown, and adjusts the number of constraints to be the same number as unknown s.

The boundary condition on the free-surface is
�pnþ lðruþruTÞ � n ¼ r
R
n; ð14Þ
where R is the radius of surface curvature. The surface curvature is calculated using a surface fitting

method. A parabolic surface is first fitted through the nearby nodes, and then the curvature is calculated

using the derivatives of the surface [9,24].

To summarize the numerical scheme, the solution procedure is given below:

Solution procedure at each time step:
t = t + Dt
calculate the initial right hand side of Eq. (7) using current flow variables

do i = 1, 2

move the interface with the fluid velocity

perform mesh smoothing using methods described in Section 4

calculate Umesh using Eq. (9)
solve Eq. (7) using the exact fractional step method

update the velocity field

update the convection term according to Eq. (11)

perform mesh reconnection and interpolation using methods described in Section 3

proceed to the next time step.
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3. Mesh reconnection algorithm

3.1. Edge swapping algorithm

The idea of using edge swapping to construct two-dimensional (2D) Delaunay triangulation is from
Lawson and Charles [25]. Lawson also generalized the concept of edge swapping to three and higher dimen-

sions [26]. The difference between 2D and 3D swapping is that there are many more variants in 3D than 2D.

In 3D, when the common face of two convex tetrahedra is swapped, three new tetrahedra are created in-

stead of two. Therefore, there has to be two kinds of swapping in 3D: 2-3 swapping and 3-2 swapping, as

shown in Fig. 2. The 3-2 swap can also be considered as a supplement for a 2-3 swap when the latter is not

applicable. The 2-3 swap is only applicable when the two tetrahedra incident on their common face are con-

vex on all common edges, like in Fig. 2. When they are not convex on one or more of their common edges

(Fig. 3(a)), the 2-3 swap cannot be performed because the transformation will cause one new tetrahedron to
be outside the original hull and have a negative volume. This kind of negative cell is usually called an

‘‘inverted’’ or ‘‘tangled’’ cell. In this case, if there are only three tetrahedra on the non-convex edge and

they form a convex polyhedron, then the 3-2 swap can be applied to remove their common edge and create

two good cells (Fig. 3(b) and (c)).
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Fig. 2. Two kinds of swapping in 3D.
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Fig. 3. 3-2 Swap in 3D: (a) 2-3 swap is not applicable because edge AB is not convex; (b) 3-2 swap is applicable if there are only three

tetrahedra incident on the non-convex edge; (c) two new tetrahedral are created after a 3-2 swap.
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Fig. 4. Four tetrahedra share edge AB: (a) original configuration; (b) 2-3 swap to remove face AB 3; (c) 3-2 swap to remove edge AB.

Polygon 1234 is defined as the ‘‘equatorial polygon’’.
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However, when there are more than three tetrahedra sharing a common edge, as in Fig. 4(a), both 2-3

and 3-2 swaps can be locally stuck. For convenience define polygon 1234 as the ‘‘equatorial polygon’’. In

this situation, a more complex reconnection scheme is needed to improve the mesh quality. Joe [27] showed
that considering the effect of two or more consecutive swaps generally gives better results than just using 2-3

and 3-2 swaps separately, and thus the case with four tetrahedra incident to a common edge can be handled

effectively. This work uses an edge swapping algorithm originally developed from Briere de L�isle and

George [17] ‘‘edge removal’’ algorithm. An example of edge removal is shown in Fig. 4(c). Equatorial poly-

gon 1234 is first triangulated into triangles 243 and 241, and then vertices A and B are connected to these

two triangles. After these reconnections, edge AB is removed and four new tetrahedra are formed. There are

many ways to triangulate a simple polygon (the total number is known as the Catalan number for a convex

polygon). The optimal triangulation maximizes the minimum quality of the triangles. Here, the quality of a
triangle is defined as the smaller quality of the tetrahedra on its two sides, formed by connecting vertices A

and B to it as described above. Freitag and Ollivier-Gooch [21] used an algorithm that stored all the pos-

sible triangulations of the equatorial polygon, and then compared all these configurations to find the best

one. To reduce memory usage, the triangulations of the equatorial polygon are stored as a rotation of many

fewer ‘‘topological classes’’. For example, there are five possible triangulations for a 5-sided polygon, but

they are all rotations of one topological class. Freitag et al. also found that it was sufficient to consider only

the cases with up to seven tetrahedra incident to a common edge, therefore, triangulations of polygons with

more than seven sides do not need to be stored.
Shewchuk [19] noticed that this edge removal process was equivalent to a series of 2-3 swaps followed by

one last 3-2 swap. Fig. 4(b) shows such an example: one 2-3 swap removing face AB3, followed by one 3-2

swap removing edge AB. This process is equivalent to the edge removal process described above: triangu-

lating polygon 1234 into 243 and 241, and then connecting vertices A and B to these two triangles. In the

general cases with n P 3 tetrahedra incident to a common edge, there are (n � 3) 2-3 swaps followed by one

3-2 swap. This edge swapping algorithm can be divided into several independent 2-3 and 3-2 swaps, each of

which involves fewer mesh elements to reconnect. Therefore, this algorithm is easier to implement than the

edge removal algorithm. When the optimal triangulation is found, it can be transformed to its equivalent
swap sequence and produce the same configuration.

Shewchuk [19] also used Klincsek�s dynamic programming technique [18] and developed a faster algo-

rithm to find the optimal triangulation of the equatorial polygon, which ran in polynomial time O(n3). This

algorithm does not force an upper bound on n, therefore, it can handle cases with arbitrary number of tet-

rahedra incident to a common edge. This feature is useful for robustness. Although Freitag and Ollivier-



Fig. 5. Decomposition of an optimization triangulation problem (from Shewchuk [19]).
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Gooch [21] found that the number of transformations that can improve the mesh quality declines dramat-

ically with increasing n, all kinds of unusual shapes can appear in a moving mesh with new vertices inserted
frequently. Since the whole numerical calculation can be destroyed by just one bad cell, it is best to be able

to consider every possible configuration to provide robustness. In practice, one can certainly set an upper

limit on n to save computation time, as long as the mesh quality is acceptable to the numerical calculation.

The detailed algorithm for edge swapping is described below. Assume n tetrahedra share an interior edge

AB. Let R be the set of edges forming the equatorial polygon, and Rij be a closed ring of edges with vertices

vi,vi+1, . . . ,vj with j P i + 2, i.e., Rij is a closed ring of vi ! vi+1 ! � � � ! vj ! vi. Let T be the optimal tri-

angulation of R, and Tij be the optimal triangulation of Rij. Obviously T is also T1n. Define Q[i,j] as a two-

dimensional array. Each entry of Q stores the quality of Tij, which is the minimum quality of the triangles in
Tij. Then the quality of T1n is Q[1,n], which is also the upper-right corner entry if Q is considered as a

two-dimensional dynamic programming table. Dynamic programming finds this value by recursively

decomposing the main problem into a series of sub-problems: finding the optimal triangulation Tij. The

decomposition process is shown in Fig. 5. Let K[i,j] be a two-dimensional array, with each entry corre-

sponding to Q[i,j] and storing the decomposition vertex vk defined in Fig. 5. Here vk is a vertex of triangle

t, with t belonging to the final optimal triangulation Tij and containing edge vivj, and vk 6¼ vi,vj. Vertex vk
separates Tij into two sub-problems Tik and Tkj. Array K actually represents how the equatorial polygon

is triangulated, and the final triangulation can be extracted from it using an algorithm described below.
Then the quality of Tij is calculated by
Q½i; j� ¼ max
k2½iþ1;j�1�

minðQ½i; k�; quality of Dvivkvj;Q½k; j�Þ: ð15Þ
Although Eq. (15) looks like a recursive process, entries of Q[i,j] can actually be filled in polynomial time if

arranged in a special filling sequence shown in Algorithm 1. For a detailed explanation of Algorithm 1 read-

ers can refer to [19].

Algorithm 1. FILLTABLES(A,B,R) (from Shewchuk [19]):

do i = n � 2, down to 1

do j = i + 2, n
do k = i + 1, j � 1

set q = QUALITY_TRIANGLE(vi,vk,vj)

if k < j � 1

set q = min(q, Q[k,j])

if k > i + 1

set q = min(q, Q[i,k])
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if k = i + 1 or q > Q[i,j]

set Q[i,j] = q

set K[i,j] = k

return (Q,K)

Algorithm 2. QUALITY_TRIANGLE(vi,vk,vj)

set q = QUALITY_TET(A, vi,vk,vj)

if q < qold

return q

else
set q = min(q, QUALITY_TET(vi,vk,vj,B))

return q

Algorithm 3. QUALITY_TET(v1,v2,v3,v4)

return quality of tetrahedron v1v2v3v4

Algorithm 4. recursive EXTRACT_TRI(TRI,vi,vj,K) (adapted from [19])

if (vj � vi >= 2)
set vk = K(vi,vj)

set TRI (1,vj � vi � 1) = vi; TRI (2,vj � vi � 1) = vk; TRI (3,vj � vi � 1) = vj
if (vk � vi> = 2)

call EXTRACT_TRI(TRI(:, 1 : vk � vi � 1), vi,vk, K)
if (vj � vk >= 2)

call EXTRACT_TRI(TRI(:, vk � vi : vj � vi � 2), vk,vj, K)
Algorithm 2 QUALITY_TRIANGLE returns the quality of a triangle Dvivkvj. In cases where the mesh

quality measure is expensive to calculate (e.g. dihedral angles), Freitag and Ollivier-Gooch�s [21] technique
is used to save computation time. They noticed that the tetrahedra in the final configurations appear in

pairs above and below the equatorial triangles, such as tetrahedra 234A and 234B in Fig. 4(c). Thus, if

one of them has a worse quality than qold, the original configuration�s minimum quality, these two cells will

not be part of the final configuration, and it is not necessary to calculate the quality of the tetrahedron on

the other side.

Algorithm 3 QUALITY_TET returns the quality of a tetrahedron. It also needs to detect inverted tet-

rahedra. Looking at Fig. 4, it is easy to get the wrong impression that the equatorial polygon 1234 is flat,

and a valid tetrahedron can always be formed by connecting vertex A or B to a triangle in it. In general,
polygon 1234 can be skewed and/or non-convex, and a new tetrahedron formed this way may certainly be

an inverted one. Algorithm 1 assumes that qualities of inverted cells are negative, therefore, it does not per-

form any convexity test. This arrangement guarantees that if the old mesh does not have inverted cells, no

such cells will be created in the new mesh.

Algorithm 1 returns two arrays: Q and K. The value of Q[1,n] gives the mesh quality after edge swapping.

If it is better than the old quality, edge swapping is applicable, and the optimal triangulation is extracted

from array K using Algorithm 4 (adapted from [19]). Then the swap sequence can be arranged using Algo-

rithms 5 and 6. In Shewchuk�s original design [19], the reconnection procedure does not identify if a triangle
t corresponds to a 2-3 swap or 3-2 swap. The reconnection procedure may do a 2-3 swap on a triangle that

is supposed to be a 3-2 swap, so an inverted tetrahedron may be created transiently. After the final 3-2

swap, this inverted tetrahedron will be deleted and the final mesh is still valid. This approach is not adopted
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here, because inverted cells have very different geometric properties than regular cells, and their geometric

calculation is much more complicated. An inverted cell is usually identified by its negative orientation. The

orientation of a tetrahedron is defined by which side a specific vertex lies on, separated by the plane formed

by the other three vertices. When this vertex lies on the negative side, then this tetrahedron is inverted. In-

verted cells require more complex geometric calculations. For example, the calculation of the face normal is

different for inverted cells. The face normal is defined as the direction from cell 1 to cell 2, as in Fig. 6. With

regular cells, the face normal direction can be calculated using the vector from the center of cell 1 to the

center of cell 2. However, if cell 1 is inverted, and vertex A falls to the lower side of plane 123, then the
vector between the two cell centers can be arbitrary and does not give the correct direction (from cell 1

to cell 2). When this inverted cell is deleted by the final 3-2 swap, the boundary faces of this transformation

(like faces A12, A23, or A31 in Fig. 3(c)) that are not involved in the edge swapping may have wrong

normals.

Based on above analysis, this work identifies the kind (2-3 or 3-2) of each swap first so that the proper

swap sequence can be applied. The identification method used here for a triangle t is to test if the open seg-

ment AB intersects the interior of t or the interior of any edge of t. If the answer is yes, then t corresponds to

a 3-2 swap; otherwise t corresponds to a 2-3 swap. This process is summarized in Algorithm 5.

Algorithm 5. SWAP32(TRI,A,B)

do m = 1, n � 2
set vi = TRI(1, m); vj = TRI(2, m); vk = TRI(3, m);
if edge AB intersects Dvivkvj in its interior or the interior of any of its edges

return m
Finally, the main function EDGE_SWAP(Æ) is designed to assemble these subroutines together, as in

Algorithm 6. The swap of each edge is performed by calling this function.

Algorithm 6. EDGE_SWAP(A,B)

calculate qold
set (Q,K) = FILLTABLES(A,B,R)
if Q(1,n) > qold

call EXTRACT_TRI(TRI,1,n,K)

set t32 = SWAP32(TRI,A,B)

set j = 0
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do while (j < n � 3)

do i = 1, n � 2

if(i! = t32)

set v1 = TRI(1,m); v2 = TRI(2,m); v3 = TRI(3,m);

if triangle Dv1v2v3 lies on the boundary
set j = j + 1

perform 2-3 swap on triangle i

interpolate flow variables for 2-3 swap

do 3-2 swap on triangle t32
interpolate flow variables for 3-2 swap

Algorithm 6 first calculates the quality of the worst cell qold which will be used to evaluate the quality of

each equatorial triangle. Then the entries of arrays Q and K are filled by calling FILLTABLES(Æ). If the new
quality Q(1,n) is better than qold, edge swapping is applicable. To set up the correct sequence, the triangu-

lation is first extracted from K using EXTRACT_TRI(Æ), and then SWAP32(Æ) is called to decide which tri-

angle corresponds to a 3-2 swap. This 3-2 swap will be performed as the last step after all the 2-3 swaps are

done. The implementation is illustrated as in Fig. 7. This figure shows a case of six tetrahedra sharing a

common edge. Vertices 1 through 6 form the equatorial polygon. Suppose the partition shown in Fig. 7
is the optimal triangulation. Let the shaded triangle D145 correspond to a 3-2 swap, and the rest of the tri-

angles correspond to 2-3 swaps. A 2-3 swap triangle is ready to be swapped when it lies on the boundary of

the equatorial polygon. Algorithm 6 goes through the list of all the triangles and swaps 2-3 ones when they

are ready. Eventually all the 2-3 swaps will be performed in a layered fashion, and the 3-2 swap is per-

formed as the last step.

This edge swapping procedure can be applied to every edge in the interior region of the computational

domain. A stack is used to store the edges that need to be checked. Once a reconnection is performed, all

the affected neighbor edges are added back to the stack to be checked again. Because for each edge swap,
the minimum quality of all the elements cannot decrease, this process will not fall into a cyclic loop.

Although this process usually gives only locally optimal results and may be far from global optimum, in

practice, it can often transform a poor mesh into a good one. The running time of each edge is cubic in

n. However, the main concern is with the running time based on total number of elements in the whole

mesh. If n has a bound, then the total cost of edge swapping will remain linear in the number of edges

in the domain. In the small-scale calculations in this work, edge swapping takes about 20% of CPU time.

Since no matter what iteration method is used to solve the Navier–Stokes equations, the time cost cannot be
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Fig. 7. Edge swap sequence illustration: a case with 6 cells sharing one common edge. Vertices 1–6 form the equatorial polygon. The

shaded triangle corresponds to a 3-2 swap, and the rest of the triangles correspond to 2-3 swaps. A 2-3 swap triangle is ready to be

swapped when it lies on the boundary of the equatorial polygon. The 3-2 swap is performed as the last step.
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lower than linear, the CPU cost of edge swapping will be a smaller fraction for larger problems. Also, it is

observed that in each time step less than 0.1% edges need to be reconnected, causing only trivial interpo-

lation errors.
3.2. Edge bisection and edge contraction

In free-surface flow simulations, the surface curvature changes throughout the computation. This is dem-

onstrated in the results of the capillary jet simulations in Section 6. If the mesh resolution is not high en-

ough to catch up with the local length scale, the numerical accuracy of the curvature calculation declines

dramatically. This is contrary to the Eulerian surface capturing methods, such as VOF and level set, in

which all the curvature information smaller than the mesh resolution will be lost and will not cause a cat-

astrophic result. On the other hand, if the mesh resolution is too high, there will be more than enough ele-

ments in the mesh to solve the problem, wasting CPU time. To keep the mesh resolution consistent with the
local length scale, edge bisection and edge contraction are used to adjust mesh resolution. The surface mesh

smoothing technique described in Section 4 can also adapt to length scale changes, while keeping the total

number of nodes constant. Obviously new vertices are needed when the flow is depleting the existing ones.

Successive edge bisection could cause the mesh quality to deteriorate [16]. However, with the edge swapping

and mesh smoothing methods modifying both connection and vertex position, the mesh quality will be

maintained.

Edge bisection is illustrated in Fig. 8. This figure shows a case of four tetrahedra sharing edge AB. If the

length of AB is too long, it is split in half by a new vertex C, and the incident tetrahedra are also split in
halves by this vertex. A 2D example of edge contraction is illustrated in Fig. 9. In this figure edge AB is

shared by two incident cells. If AB is too short, it can be collapsed into a new vertex C, and the two incident

cells are also collapsed to two edges. Edge contraction does not always produce a topologically valid new

mesh. For example, edge AB of Fig. 10 cannot be collapsed. Otherwise, the resulting mesh will have two

different triangles with exactly the same three vertices. Dey et al. [28] studied the conditions under which

the topological structure is preserved after edge contraction. They proved that in 2D and 3D, when the

intersection of the links of two vertices A and B of the edge to be collapsed equal the links of this edge,

the topological type will be conserved after edge contraction. The links of a simplex t (such as a vertex,
edge, face or cell) are defined as all the simplices contained in those simplices containing t, except those

directly attached to t.
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Fig. 8. A 3D example of edge bisection.
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Fig. 9. A 2D example of edge contraction. Edge AB is collapsed to a new vertex C. In the left figure: Link(a) \ Link(b) = Link(edge

AB) = {x,y} (from Dey et al. [28]).
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Fig. 10. A 2D example of an edge that cannot be collapsed. Link(a) \ Link(b) = {x,y,z,yz} 6¼ Link(edge AB) = {x,y} (from Dey et al.

[28]).
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3.3. Flow variable interpolation after reconnection

Because mesh reconnection creates new mesh elements, the flow variables need to be projected to these

new elements. From the description of the numerical scheme and the solution procedure in Section 2, one

can see that only the line integral s of the stream function needs to be interpolated. Because stream function

s is defined on each edge, only cases with edge changes need interpolation.

There are four reconnection cases to consider: 2-3 swap, 3-2 swap, edge bisection, and edge contraction.

Because the 3-2 swap (Fig. 3) does not create new edges, no interpolation is necessary.
Now consider the edge bisection case (Fig. 8). Assume there are n tetrahedra incident to edge AB. Then

after edge bisection, there are n new edges that are incident to C, and AB is split into AC and CB. Because s

is defined as a line integral, edges AC and CB will have a portion of the s value of AB. For the other new

edges that are incident to C, the stream functions are calculated as follows. First the velocities of the new

cells are set according to the old cells. Because every new cell is part of an old cell, they should have the

same velocity as the corresponding old ones. Then the stream function on the new edges are approximated

from these velocities and the relation between s and uc described in Section 2. Usually, the number of un-
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knowns (stream function) and constraints (cell velocity) are not equal, and a least squares fitting method is

used in these situations.
For the edge contraction case, assume edge AB is collapsed to a new vertex C. Then all the edges incident

to C need a new stream function value. The interpolation is handled like mesh smoothing, which can be

illustrated using the 2D example in Fig. 9. For the un-shaded cells that are not collapsed, their structures

will remain the same but their boundaries are moved, because vertices A and B are moved to a new position

C. So for these cells the operation of edge contraction is just like mesh smoothing, and the momentum flux

can be calculated using Umesh from Eq. (9) and uc from the neighbor cells. Then the velocity of each affected

cell can be calculated using momentum conservation, and the stream function can be calculated from the

cell velocities. Similar to edge bisection, a least squares fitting method is used here if necessary. If all these
affected cells (i.e., incident to the new vertex C) are set to have the same average velocity of the original cells,

this is a first order approximation. So by considering the flux caused by mesh motion, this interpolation

method is approximately second order accurate.

For the interpolation for the 2-3 swap, consider the example in Fig. 2(a) and (b). In the original config-

uration, two tetrahedra AB21 and AB23 share a common face AB2. After the 2-3 swap, a new edge 13 is

created, so the stream function s13 needs to be interpolated on edge 13. The cell velocities of the three new

cells are set based on momentum conservation, and then s13 is calculated using a similar least squares fitting

method described above. If this 2-3 swap is one of a sequence of edge swaps and the common edge is AB,
then the new tetrahedron AB13 is a temporary cell and will be deleted after the final 3-2 swap. Therefore

there is no need to consider this cell�s velocity when calculating s13. Also this cell may not have a better

quality than qold and including it in the interpolation process may cause the condition number of the least

squares matrix to deteriorate. In the worst case, cell AB13 could be a degenerate cell, when the new edge 13

intersects edge AB, as shown in Fig. 11. In this case cell AB13 may have zero volume. Up to the machine

round-off error, this volume can also be negative. However, this negative volume will not cause the same

geometric effect as the inverted cells, since it will not give a wrong value to the face normal. This can be

illustrated using Fig. 6. In this figure, if vertex A falls onto the plane 123, or a little below due to the
round-off error, the difference between the two cell centers still gives the correct direction of face normal:

from cell 1 to cell 2. So this degenerate cell will not cause error in the geometric calculation. However, since

it has zero volume, including it in the interpolation process may cause a catastrophic error for s13. There-

fore, this cell should definitely be excluded in order to achieve robustness.
4. Mesh smoothing

Mesh smoothing methods relocate the vertex position to improve the mesh quality without changing

mesh topology, as shown in Fig. 12. Laplacian smoothing is the simplest and fastest smoothing method,



Fig. 12. Mesh smoothing: a local submesh consisting of a free vertex x1, its direct neighbors x11, . . . ,x15, and its incident elements

t1, . . . ,t5. The right figure shows the mesh after vertex x1 is smoothed (from Freitag and Ollivier-Gooch [21]).
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and is widely used in moving-mesh schemes [15,16,22]. This method adjusts the location of each mesh ver-

tex to the geometric center of its neighbor vertices. Consider an interior vertex xi and its direct neighbors xij.
The Laplacian scheme and its weighted-average version can be expressed as:
X

j

ðxij � xnew
i Þ ¼ 0; ð16Þ

X
j

kijðxij � xnew
i Þ ¼ 0; ð17Þ
where k is usually called a spring constant. Eq. (17) can also be converted to a parabolic system
xnew
i � xold

i ¼
X
j

kijðxij � xiÞ: ð18Þ
Similar ideas can be applied to the surface mesh. Consider a free vertex xi and its direct neighbors xij, all on

the interface. Let n̂ be the surface normal. To conserve volume and the interface profile, the free vertex

should only move in the tangential plane of the surface
xnew
i � xold

i ¼ ðI� n̂n̂TÞ
X
j

kijðxij � xiÞ; ð19Þ
Eq. (19) can also be solved implicitly to obtain better stability. Since n̂n̂T is non-linear in terms of xi, Eq.

(19) is solved by a predictor–corrector scheme
xnew
i � xold

i ¼
X
j

kijðxnew
ij � xnew

i Þ � fn; fn ¼ n̂n̂T
X
j

kijðxij � xiÞ
" #new

; ð20Þ
where the term fn is iteratively solved using updated values of xi until convergence is reached. The reason

that the lagged term is fn instead of just n̂n̂T is because the different coordinates in Eq. (20) can be decoupled

and separated into smaller independent problems. To adjust mesh resolution, the spring constant k can also

be set according to the local length scale L
kij ¼ c
jxij � xij

L
: ð21Þ
The disadvantage of Laplacian smoothing is that it is not directly related to a well-behaved element quality

measure. Laplacian smoothing can make all the vertices distributed uniformly, since Eq. (17) is equivalent
to minimizing

P
edgeskel

2
e over the whole domain, where le is the edge length. But Laplacian smoothing may

cause some cells in the mesh to become badly shaped or even inverted, as demonstrated by Freitag and Olli-

vier-Gooch [21]. In 3D, this problem is more common since each vertex has more neighbors than in 2D.
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Hence Freitag et al.�s [20,21] local optimization-based smoothing method is more attractive, which is

adopted in this work. This method directly optimizes the mesh quality, so it guarantees that a better mesh

will always be generated after smoothing. The local optimization-based smoothing method adjusts the ver-

tices one by one, and only solves a local optimization problem to maximize the minimum quality of local

cells. Consider Fig. 12, where the positions of vertices x11–x15 are fixed, and the free vertex x1 can be moved
to a new position. The objective is to move vertex x1 to such a position that the minimum quality of the

local elements t1–t5 is maximized. Let function fi(x1) be the quality of triangle ti. Then the mesh optimiza-

tion problem can be formulated as the following system:
max /ðx1Þ ¼ min fiðx1Þ
such that x1 2 feasible region;

ð22Þ
Freitag et al. used a steepest descent method to solve this problem. When several cells share the same min-

imum quality, a non-smooth optimization problem needs to be solved to find the direction along which

the qualities of all these cells can be improved. If no such direction exists, the optimal position is reached.

Freitag et al. converted this non-smooth optimization problem to a convex (positive definite) quadratic

programming problem, which is known to have a polynomial solution and has many well-developed

algorithms [29–31].

Freitag et al.�s optimization-based smoothing method can also be used for surface mesh smoothing,

using the similar idea of fixing the free vertex in the tangential plane of the surface. However, since this
is a local method, it may move a surface vertex to a relatively longer distance than the Laplacian method

of Eq. (20). This causes disturbances on the surface because the tangential plane is only a first order approx-

imation of the surface profile. Since the surface mesh is essentially two-dimensional, where Laplacian

smoothing can be acceptable, this work uses the Laplacian method for surface smoothing, and the optimi-

zation-based method for interior smoothing. Unlike mesh reconnections described in Section 3, there is no

need to do flow variable interpolation after mesh smoothing. This can be seen from the description of the

numerical scheme and the solution procedure in Section 2. The flux change caused by mesh motion is al-

ready included in the momentum equation (7).
5. Numerical tests

The mesh quality measure used in this work is Knupp�s algebraic quality metric for a tetrahedron [32].

For consistency purposes this metric is used for both edge swapping and optimization-based mesh smooth-

ing. Let x0, x1, x2, and x3 be the coordinates of four vertices of a tetrahedron. Define its Jacobian matrix A

as
A ¼ ðx3 � x0; x2 � x0; x1 � x0Þ: ð23Þ

Let kij be the entries of matrix ATA. Then the quality of this tetrahedron is defined as:
q ¼ 3ðdetðAÞ
ffiffiffi
2

p
Þ2=3

1:5ðk11 þ k22 þ k33Þ � ðk12 þ k23 þ k13Þ
: ð24Þ
This quality measure is based on the transformation between a real cell and an ideal cell, therefore, it can

effectively identify all kinds of bad cells.

The 3D test cases presented here are very similar to Baker et al.�s [16] 2D demonstrations. Fig. 13 shows

a sphere translating through a channel at a constant velocity, controlled by a CFL number of 0.3. Fig. 14

shows a cube rotating in a sphere with constant angular velocity, also at a CFL number of 0.3. In both cases
significant deformations are simulated with acceptable mesh qualities, minimum dihedral angle being 14.4�
and 8.27�, respectively.



Fig. 13. The slice view of a sphere translating through a channel. The minimum dihedral angle during the process is 14.4�.
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6. Numerical simulations

Three simulations are presented to demonstrate the robustness and accuracy of this scheme for flows

with large deformation: ligament collapsing, capillary jet breakup, and collision of two equal size

droplets.

6.1. Ligament collapsing

The first simulation is a liquid ligament collapsing into a droplet under surface tension. This case is

important in spray modeling since ligaments are frequently formed in droplet collisions, and they may
break into satellite drops or collapse into a single drop. The initial condition is a cylinder with a hemi-

sphere at each end. Under the force of surface tension, the ligament is pulled into a spherical shape.

The sphere�s oscillations quickly die out due to the damping effect of viscosity. In this case, the liga-

ment is short enough that it does not pinch into two droplets. For this calculation the Ohnesorge num-

ber, Oh = l/(qr0r)
1/2 is 0.2 and the characteristic time, tc ¼ ðqr30=rÞ

1=2
is 1.150 ms. A sequence of images

is shown in Fig. 15.



Fig. 14. The slice view of a cube rotating in a sphere: (a) original mesh; (b) after 360� rotation. The minimum dihedral angle during the

process is 8.27�.

Fig. 15. Ligament collapsing into a droplet under surface tension. Vectors indicate velocity of the surface. The Ohnesorge number,

Oh = l/(qr0r)
1/2 is 0.2. Figures are taken at times: 0, 3.48, 5.74, 6.59, 7.63, 9.89, non-dimensionalized by tc ¼ ðqr30=rÞ

1=2 ¼ 1:150 ms.
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6.2. Capillary jet breakup

The capillary instability of a cylindrical jet is simulated with a periodic boundary condition. The mech-

anism of a liquid jet breaking up into droplets is of fundamental importance for spray simulations. An axi-

symmetric numerical analysis of this problem was done by Ashgriz and Mashayek [33]. Three different
cases are presented here to show the capability of this dynamic meshing scheme. In the first case, the initial

disturbance e of the jet profile is 2.0% of the initial radius of the cylinder r0. The characteristic time,

tc ¼ ðqr30=rÞ
1=2

is 0.0364 s. The wavelength k of the disturbance is ten times as large as r0. The non-dimen-

sional wave number kr0 is 0.628, which falls into the unstable regime of the linear theory. Fig. 16 shows the

jet images at different times of this simulation. The calculation is stopped when the minimum radius reaches

5% of r0, and this point is defined as the breakup point. The breakup time for this case is 13.01, non-dimen-

sionalized by the characteristic time. This figure shows that the dynamic meshing scheme can adapt well to

the surface length scales, while the curvature is continuously increasing in the neck region.
Fig. 17 shows the comparison of the disturbance growth between the numerical and the analytical solu-

tions. The analytical solutions are taken from Lord Rayleigh�s inviscid linear theory [34], Weber�s viscous
linear analysis [35], and Bogy�s viscous linear stability analysis [36]. In order to be comparable to linear

analysis, the initial velocity potential / is set to be exactly the same as in the linear analysis
Fig.

Fig. 1

rr0/(qm
/ ¼ BJ 0ðikrÞ sinðkxÞ; ð25Þ
16. Capillary jet breakup: kr0 = 0.628; e = 0.02. Images are at non-dimensional times of 0, 11.37, and 13.01 (breakup time).

7. Disturbance growth process: comparison between numerical and analytical solutions. kr0 = 0.628; e = 0.02; J =
2) = 238.34.
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where the disturbance amplitude B is given by:
Fig. 1

rr0/(qm
B ¼ � er0c
ikJ 1ðikr0Þ

; ð26Þ

c2 ¼ r
qr30

I1ðkr0Þ
I0ðkr0Þ

kr0ð1� k2r20Þ; ð27Þ
Eq. (27) is from Lord Rayleigh [34], and is represented as the dashed line in Fig. 17. The constant c rep-

resents the disturbance growth rate. Weber�s viscous solution [35] is given by Eq. (28), and is represented

as the dotted line in Fig. 17
c2 þ c
3m
r20

k2r20 �
r

2qr30
ð1� k2r20Þk2r20 ¼ 0: ð28Þ
Bogy used the results from Green�s Cosserat theory [37], and performed linear stability analysis for viscous

jet [36]. His solution is given in Eq. (29) and represented as the solid line in Fig. 17. In Eq. (29), the velocity

u0 can be eliminated, so the growth rate c is still independent of u0
c
r0
u0

� �2

þ c
r0
u0

� �
24k2r20 þ k4r40
Reð8þ k2r20Þ

þ 4k4r40 � k2r20
Weð8þ k2r20Þ

¼ 0; Re ¼ r0u0=m; We ¼ qr0u20=r; ð29Þ
Fig. 17 shows that when the disturbance is small, the numerical growth rate agrees very well with Bogy�s
solutions. The reason for the exact match at the starting point t = 0.0 is because the analytical growth rate

c is used in the initial condition (27). However, the numerical simulation still reveals that the growth process

is exponential and can follow the analytical solution until the disturbance has grown quite large. Fig. 18

shows a similar case with a different wave number kr0 = 0.4312. This simulation is also in good agreement

with Bogy and Weber�s solutions.
Fig. 19 shows another simulation for jet breakup. The initial condition in this case is a perfect cylinder

with a sinusoidal disturbance in the velocity field. The initial Reynolds number, Re = r0u0/m, is 18 and
8. Disturbance growth process: comparison between numerical and analytical solutions. kr0 = 0.4312; e = 0.02; J =
2) = 238.34.



Fig. 19. Capillary jet breakup: kr0 = 0.628, initial Re = r0u0/m = 18 and We ¼ qr0u20=r ¼ 1:4. Images are at non-dimensional times of 0,

1.49, 3.23, 4.49, and 6.49 (breakup time).

Fig. 20. Disturbance growth process. kr0 = 0.628, initial Re = r0u0/m = 18 and We ¼ qr0u20=r ¼ 1:4. The dimensionless breakup time is

6.49.
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Weber number, We ¼ qr0u20=r, is 1.4. The wavelength k of the disturbance is also 10r0. Fig. 20 shows the

disturbance growth process. The dimensionless breakup time is 6.49. Because a much larger initial velocity

is used in this case, the breakup time is much shorter than the analytical solutions for the same wave num-

ber, and the deformation growth process is also very different from the above two cases.

6.3. Droplet collision

Fig. 21 shows the images of head-on collision between two equal size droplets. The initial condition is
two spherical droplets connected by a thin bridge. The initial radius r0 of a single droplet is 0.168 mm.

Let u0 be the initial velocity of a single droplet. The collision Weber number and Reynolds number are de-

fined using the initial diameter and the relative velocity
Re ¼ 2d0u0=m; We ¼ 4qd0u20=r: ð30Þ



Fig. 21. Collision of two equal size droplets. Droplet radius r0 = 0.168 mm, Re = 2d0u0/m = 296.5, We ¼ 4qd0u20=r ¼ 61:4.
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The Weber number for this simulation is 61.4, and the Reynolds number is 296.5. Define the dissipated en-

ergy U and deformation S as:
U ¼ 1

2
l
Z t

0

dt
Z

oui
oxj

þ ouj
oxi

� �2

dV ; ð31Þ

S ¼ Surface area

8pr20
: ð32Þ
The total non-dimensional dissipation until maximum deformation is U=ð2pqr30u20Þ ¼ 0:3642 � Oð1Þ.
The maximum deformation is S = 1.407. These results agree well with the experimental and analytical

results from Jiang et al. [38]: U=ð2pqr30u20Þ � Oð1Þ and S � 1.4. For numerical results of the viscos-

ity effect on maximum deformation during head-on collisions, readers can refer to Dai and

Schmidt [39].
7. Conclusions

A three-dimensional unstructured moving-mesh scheme for free-surface flows is presented in this work.

This scheme is capable of simulating large deformation and exactly tracking the free-surface profile. An

edge swapping algorithm and an optimization-based mesh smoothing algorithm are used to maintain mesh

quality as the domain deforms. The robustness and accuracy of this scheme are demonstrated with simu-

lations of deforming liquid ligaments, periodic jets, and colliding droplets. Comparison with the experimen-

tal and analytical results shows good agreement.

Though demonstrated for free-surface flows, the re-meshing scheme can also be used to simulate flows

with moving control surfaces, fluid–structure interaction, reciprocating machinery, etc. In these circum-
stances, the movement of boundaries can be exactly solved or prescribed with a moving-mesh method. This

algorithm is also useful where adaptive mesh resolution is needed, e.g. capturing shocks in transient super-

sonic flows. For such problems, the region of high resolution can be dynamically captured. Other interest-

ing problems, such as topological changes, multi-phase flows, and parallelization will be addressed in future
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work. Preliminary results were published in [40], in which mesh separation and two-phase flow simulations

were presented.
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